PUIs ENAs and ACRs

a trio of acronyms

Kevin Schoeffler

SHINE 2010 Student Day Tutorials
Santa Fe, New Mexico

July 25, 2010
What do they stand for?

- **PUIs (Pick-Up Ions)**
 Non thermal ions in environments like the solar wind formed by the pick-up process ~ 10 keV

- **ACRs (Anomalous Cosmic Rays)**
 High energy ions that contend with "real" cosmic rays in energy $\sim 1-100$ MeV

- **ENAs (Energetic Neutral Atoms)**
 Neutral atoms originating from high energy ions from ~ 10 eV to ~ 1 MeV

Allow us to "see" invisible signatures of these ions from quite a long way away.
What do they stand for?

- **PUIs (Pick-Up Ions)**
 Non thermal ions in environments like the solar wind formed by the pick-up process ~ 10 keV

- **ACRs (Anomalous Cosmic Rays)**
 High energy ions that contend with "real" cosmic rays in energy ~ 1-100 MeV

- **ENAs (Energetic Neutral Atoms)**
 Neutral atoms originating from high energy ions from ~ 10 eV to ~ 1 MeV

Allow us to "see" invisible signatures of these ions from quite a long way away

K. Schoeffler
PUls ENAs and ACRs
What do they stand for?

- **PUIs (Pick-Up Ions)**
 Non thermal ions in environments like the solar wind formed by the pick-up process ~ 10 keV

- **ACRs (Anomalous Cosmic Rays)**
 High energy ions that contend with "real" cosmic rays in energy ~ 1-100 MeV

- **ENAs (Energetic Neutral Atoms)**
 Neutral atoms originating from high energy ions from ~ 10 eV to ~ 1 MeV
 Allow us to "see" invisible signatures of these ions from quite a long way away
What do they stand for?

- **PUIs (Pick-Up Ions)**
 Non thermal ions in environments like the solar wind formed by the pick-up process ~ 10 keV

- **ACRs (Anomalous Cosmic Rays)**
 High energy ions that contend with "real" cosmic rays in energy $\sim 1-100$ MeV

- **ENAs (Energetic Neutral Atoms)**
 Neutral atoms originating from high energy ions from ~ 10 eV to ~ 1 MeV
 Allow us to "see" invisible signatures of these ions from quite a long way away
Picture of pick-up process

400 km/s

25 km/s
Picture of pick-up process

- 30 km/s
- 400 km/s
Picture of pick-up process

K. Schoeffler

PUIs, ENAs, and ACRs
How are they ionized?

Charge Exchange
An ion interacts with the neutral atom stealing an electron

Photo-Ionization
UV Radiation interacts with the outermost electron ionizing the neutral atom

- Photo-Ionization dominates close to the sun
- Past a couple AU, Charge Exchange dominates
A ring shaped phase space distribution caused by pick-up process.

- Magnetic field is out of the plane.
- There is no preferential gyrophase for the neutrals to be picked up.
Heliosphere description

Heliosphere
The contents of the Heliopause

Heliosheath
The region between the Termination Shock and the Heliopause
- PU1s get dragged to the heliosheath by the solar wind.
- Particles get accelerated here and escape back towards the center of the heliosphere.
How are they accelerated?

- Fermi acceleration along shocks (Pesses et al. 1981)
 Particles bounce between the fast upstream inflow and the slower downstream outflow gaining energy each bounce

- Stochastic acceleration (Fisk and Gloekler 2006)
 Random fluctuations of the electric and magnetic fields interact with particles such that they gain energy

- Acceleration within magnetic islands (Oka 2010, Drake et al. 2010)
 Particles interact with reconnection electric fields present near islands, and can be Fermi accelerated in closing islands
How are they accelerated?

- **Fermi acceleration along shocks** (Pesses et al. 1981)
 Particles bounce between the fast upstream inflow and the slower downstream outflow gaining energy each bounce

- **Stochastic acceleration** (Fisk and Gloekler 2006)
 Random fluctuations of the electric and magnetic fields interact with particles such that they gain energy

K. Schoeffler

PUIs ENAs and ACRs
How are they accelerated?

- Fermi acceleration along shocks (Pesses et al. 1981)
 Particles bounce between the fast upstream inflow and the slower downstream outflow gaining energy each bounce.

- Stochastic acceleration (Fisk and Gloekler 2006)
 Random fluctuations of the electric and magnetic fields interact with particles such that they gain energy.

- Acceleration within magnetic islands (Oka 2010, Drake et al. 2010)
 Particles interact with reconnection electric fields present near islands, and can be Fermi accelerated in closing islands.
A particular power law distribution is predominantly found (Fisk and Gloekler 2006)

- velocity distribution that goes off like v^{-5}
- this is equivalent to an kinetic energy distribution that goes off like E^{-2} (Differential number density)
- which is equivalent to an kinetic energy distribution that goes off like $E^{-1.5}$ (Differential intensity)

(Fisk and Gloekler 2006)
What are ENAs?

- Opposite of PUIs
- Energetic ions that gain an electron and become neutral
- Allows us to see from remote locations where the neutralization takes place

400 km/s
What are ENAs?

- Opposite of PUIs
- Energetic ions that gain an electron and become neutral
- Allows us to see from remote locations where the neutralization takes place

400 km/s
What are ENAs?

- Opposite of PUIs
- Energetic ions that gain an electron and become neutral
- Allows us to see from remote locations where the neutralization takes place

400 km/s
Satellites Measuring ENA’s

- **Cassini (INCA) (1997-present)**
 Looks at the magnetosphere of Saturn

- **IMAGE (2000-2005)**
 Looks at the Earth’s magnetosphere

- **TWINS (2008-present)**
 Looks at the Earth’s magnetosphere

- **IBEX (2008-present)**
 Looks at an all sky view of the Heliosheath
A ribbon shaped signature of ENAs found around the nose of the heliosphere

There is still no consensus on the source of this ribbon

(McComas et al. 2009)
PUIs (Pick-Up Ions)
a core set of high energy ions that can be accelerated to become ACRs

ACRs (Anomalous Cosmic Rays)
high energy particles \sim 1-100 MeV that were accelerated by at least one of the contending acceleration mechanisms

ENAs (Energetic Neutral Atoms)
let us see things like the ribbon or a global picture of the Earth’s magnetosphere